MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Factor the polynomial \(f(x) \). Then solve the equation \(f(x) = 0 \).

1) \(f(x) = x^4 - 4x^3 - 7x^2 + 22x + 24 \)
 A) \((x - 2)(x - 3)(x - 1)(x - 4)\); 2, 3, 1, 4
 B) \((x - 2)(x - 3)(x + 1)(x - 4)\); 2, 3, -1, 4
 C) \((x + 2)(x + 3)(x + 1)(x - 4)\); -2, -3, -1, 4
 D) \((x + 2)(x - 3)(x + 1)(x - 4)\); -2, 3, -1, 4

Given the polynomial function \(f(x) \), find the rational zeros, then the other zeros (that is, solve the equation \(f(x) = 0 \)), and factor \(f(x) \) into linear factors.

2) \(f(x) = x^3 - 27x - 54 \)
 A) \(-3, 3, 6; f(x) = (x + 3)(x - 3)(x - 6)\)
 B) \(-6, -3, 3; f(x) = (x + 6)(x + 3)(x - 3)\)
 C) \(-3, \text{ multiplicity 2}; 6; f(x) = (x + 3)^2(x - 6)\)
 D) \(-3, \text{ multiplicity 2}; -6; f(x) = (x + 3)^2(x + 6)\)

Evaluate the function for the given values of \(a \) and \(b \). Then use the location theorem to determine which of the statements below is true.

3) \(a = 1, b = 4 \)
 \(f(x) = x^4 - 9x^3 + 19x^2 + 18x + 28 \)
 A) \(f(1) \) and \(f(4) \) have opposite signs, therefore \(f \) has a real zero between 1 and 4
 B) \(f(1) \) and \(f(4) \) have opposite signs, therefore \(f \) does not have a real zero between 1 and 4
 C) \(f(1) \) and \(f(4) \) have the same sign, therefore the intermediate value theorem cannot be used to determine whether \(f \) has a real zero between 1 and 4
 D) \(f(1) \) and \(f(4) \) have the same sign, therefore \(f \) does not have a real zero between 1 and 4

Information is given about a polynomial \(f(x) \) whose coefficients are real numbers. Find the remaining zeros of \(f \).

4) Degree 4; zeros: 5 - 5i, 6i
 A) \(-5 - 5i, -6i\)
 B) \(5 + 5i, -6i\)
 C) \(5 + 5i, 6 - i\)
 D) \(-5 + 5i, -6i\)

Form a polynomial \(f(x) \) with real coefficients having the given degree and zeros.

5) Degree: 3; zeros: -3 and 3 - 2i
 A) \(f(x) = x^3 - x^2 - 5x + 39 \)
 B) \(f(x) = x^3 - x^2 + 11x + 39 \)
 C) \(f(x) = x^3 - 3x^2 - 5x + 39 \)
 D) \(f(x) = x^3 - 3x^2 + 5x - 52 \)

Find all zeros of the function and write the polynomial as a product of linear factors.

6) \(f(x) = x^4 + 34x^2 + 225 \)
 A) \(f(x) = (x + 3i)(x - 3i)(x + 5i)(x - 5i) \)
 B) \(f(x) = (x + 3 + 5i)^2(x + 3 - 5i)^2 \)
 C) \(f(x) = (x + i)(x - i)(x + 15i)(x - 15i) \)
 D) \(f(x) = (x + 3i)^2(x + 5i)^2 \)

State the domain of the rational function.

7) \(f(x) = \frac{5x - 4}{2x + 16} \)
 A) \((\infty, -16) \cup (-16, \infty)\)
 B) \((\infty, 8) \cup (8, \infty)\)
 C) \((\infty, \infty)\)
 D) \((\infty, -8) \cup (-8, \infty)\)
Find the horizontal asymptote, if any, of the rational function.
8) \(f(x) = \frac{8x^3 - 3x - 7}{5x^3 - 2x + 8} \)

A) \(y = \frac{8}{5} \)
B) None
C) \(y = \frac{3}{2} \)
D) \(y = 0 \)

Find the vertical asymptote(s) of the graph of the given function.
9) \(f(x) = \frac{x - 11}{x^2 - 4} \)

A) \(x = 11 \)
B) \(y = 2, y = -2 \)
C) \(x = 2, x = -2 \)
D) \(x = 2 \)

Approximate the number using a calculator. Round your answer to three decimal places.
10) \(4.5^\pi \)

A) 14.137
B) 172.652
C) 112.753
D) 36.462

The graph of an exponential function is given. Select the function for the graph from the functions listed.
11)

![Graph of an exponential function]

A) \(f(x) = 4^{-x} \)
B) \(f(x) = -4^{-x} \)
C) \(f(x) = -4^x \)
D) \(f(x) = 4^x \)

Simplify the expression. Express the answer so that all exponents are positive. Whenever an exponent is 0 or negative, we assume that the base is not 0.
12) \(\frac{(xy^2)(x^4y)}{(x^5y^2)^2} \)

A) \(\frac{y^4}{x^5} \)
B) \(\frac{y^3}{x^6} \)
C) \(\frac{x^5}{y^4} \)
D) \(\frac{x^6}{y^3} \)

Solve the equation.
13) \(2(1 + 2x) = 32 \)

A) \(\{4\} \)
B) \(\{16\} \)
C) \(\{-2\} \)
D) \(\{2\} \)

Write the equation in its equivalent exponential form.
14) \(\log_5 125 = x \)

A) \(x^5 = 125 \)
B) \(5^x = 125 \)
C) \(125^x = 5 \)
D) \(125^5 = x \)
Find the domain of the logarithmic function.

15) \(f(x) = \ln (9 - x) \)

A) \((-\infty, 0)\) B) \((-\infty, 9)\) C) \((-\infty, 9) \text{ or } (9, \infty)\) D) \((-9, \infty)\)